Special-Purpose Digital Circuits

- Buffer Circuits
- Path-Selector Circuits
- Information-Storing Circuits
- Trigger Circuits
- Multi-Vibrator Circuits
- Voltage-Generator Circuits
Necessary Functions other than Logic Operations

1) Transmission of signals over long interconnection lines or to many receivers
 - Buffer (inverting, non-inverting, tri-state)
2) Selection of an interconnection for a Signal according to a condition
 - Selector (multiplexer, demultiplexer)
3) Storing an information for some time
 - Flip-flop, latch
4) Removing Noise from a Signal
 - Trigger circuits
5) Generation of Synchronous or Asynchronous Control Signal
 - Multi-vibrator circuits (a-stable, bi-stable, mono-stable)
6) Generation of other Voltages than VDD or VSS
 - Voltage generator circuits

CMOS logic circuits do contain more than only logic gates.
Buffer Circuits

- Increasing the driving capability of a logic signal for large load capacities
- Conventional non-inverting buffers
- Inverting buffers
- Tri-state buffers
Reduction of Logic-Gate Fan-Out with a Buffer

NAND-gate with
fan-out = k, fan-in = m

NAND-gate with
fan-out = 1, fan-in = m

Delay without buffer
\[t_{df,NAND} = m \cdot (m \cdot t_{fin} + k \cdot t_{fex}) \]
\[t_{dr,NAND} = m \cdot t_{rin} + k \cdot t_{rex} \]

Delay with buffer
\[t_{df,NAND} = m \cdot (m \cdot t_{fin} + t_{fex}) + t_{buffer} \]
\[t_{dr,NAND} = m \cdot t_{rin} + t_{rex} + t_{buffer} \]

The delay of a circuit with large fan-out (i.e. large output load) can be reduced with a buffer, if \((k-1) \cdot t_{rex} > t_{buffer}\) is valid.
Construction of Non-Inverting CMOS Buffers

Non-inverting buffers have even number of inverters. Each stage has a factor $A_{\text{ni-buffer}} (C_{\text{load}}, C_{\text{in}})$ larger driving capability.

Optimum choice of A and N

$$A_{\text{ni-buffer}} = \left[\frac{C_{\text{load}}}{C_{\text{in1}}} \right]^{\frac{1}{2N}}$$

$$N_{\text{ni-buffer}} = \text{int}\left[\frac{1}{2} \ln \frac{C_{\text{load}}}{C_{\text{in1}}} \right]$$

(C_{in1} is the input capacity of the 1st inverter)
Construction of Inverting CMOS Buffers

Inverting buffers use an odd number of cascaded inverters. Each stage has again $A_{i-buffer}$ (C_{load}, C_{in}) larger driving capability.

Option Choice of A and N

$$A_{i-buffer} = \left[\frac{C_{load}}{C_{in1}} \right]^{\frac{1}{2N+1}}$$

$$N_{i-buffer} = \text{int} \left[\frac{1}{2} \ln \left(\frac{C_{load}}{C_{in1}} \right) - \frac{1}{2} \right]$$

(C_{in1} is the input capacity of the 1st inverter)
Tri-State Inverter

Symbol

\[
\begin{array}{ccc}
\text{En} & \text{In} & \text{Out} \\
0 & 0 & \text{floating} \\
0 & 1 & \text{floating} \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

Truth Table

CMOS-Circuit Implementation

A tri-state inverter has an additional high-impedance or floating output state selected with an enable signal. It can be built with a conventional inverter and a transmission gate.
A tri-state buffer combines high driving capability for a large load capacity C_{load} and the possibility of a floating output.
Path-Selector Circuits
- Multiplexer- and Demultiplexer Principles
- Implementation with Transmission Gates
- Series Connection of Transmission Gates
- Implementation with Tri-State Inverters or Tri-State Buffers
Multiplexer and Demultiplexer Principles

Conditional signal-path selection is performed with multiplexer- or demultiplexer circuits.
Path-selector realization is easiest by transmission gates.
Series Connection of Transmission Gates

A series connection of N transmission gates represents an RC-chain. Therefore, its delay time increases with N^2.

$t_{PS,ld} \approx t_{PS,lh} \approx \left(R_n \parallel R_p \right) \left(C_{load} \right) \cdot N + 0.35 \cdot \left(R_n \parallel R_p \right) \left(C_{inn} + C_{inp} \right) \cdot N^2$
MUX/DEMUX Realization with Tri-State Buffers

With tri-state buffers the delay problem of signal-path selectors is solved at the cost of larger integration-area.
Information-Storing Circuits

- Stabilizing-Feedback Principle
- Set-Reset Flip-Flop
- Clocked Flip-Flops
 - Level Sensitive Flip-Flops
 - Edge-Triggered Flip-Flops
 - Flip-Flop Timing
Stabilizing-Feedback Principle of Data Storage

By feeding back the identical signal to a circuit node, stable circuit states result, which are usable for data storage.
Set-Reset (SR) Flip-Flop

Set-reset flip-flops extend the stabilizing feedback principle by a method for external modification of the stored data.

Circuit diagram (constructed with NAND gates)

Logic Symbol

Truth table

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Q</td>
<td>Q</td>
</tr>
</tbody>
</table>
Level-Sensitive Data (D) Flip-Flop

The level-sensitive data (D) flip-flop extends the SR flip-flop with additional circuitry for clock-controlled writing of data.
Latch: Transmission-Gate Version of D Flip-Flop

Circuit diagram of a latch
(data flip-flop constructed with inverters and transmission gates)

The simplest construction of level-sensitive data (D) flip-flops has 2 inverters and 2 transmission gates and is called “latch”.

Mattausch, CMOS Design, H20/5/2
Edge-Triggered data (D) Flip-Flop

Circuit diagram of a D flip-flop into which data is written at the positive edge (low-high) change of the clock (constructed with 2 latches)

The edge-triggered D flip-flop has 2 latches. Data transfer to the slave latch occurs only at transition edges of the clock.
The safe operation of a flip-flop requires stable data signals for a minimum time around the clock edge, which determines data transfer into the storage part of the flip-flop.
Trigger Circuits

- Removal Possibilities of Signal Noise
- Schmitt-Trigger Circuit
Noise can be removed from a signal with a circuit who has different switching points for low-high and high-low transition.
The CMOS inverter circuit can be easily modified to obtain an inverting Schmitt-trigger circuit to reduce input-signal noise.
Multi-Vibrator Circuits

- Destabilizing-Feedback Principle
- A-Stable Multi-Vibrator or Oscillator
- Bi-Stable Multi-Vibrator or Flip-Flop
 (see Part on Information-Storing Circuits)
- Mono-Stable Multi-Vibrator
Destabilizing Feedback: Oscillator Circuits

Destabilizing inverter-feedback coupling

Resulting unstable (oscillating) signals at circuit nodes

By feeding back the inverted signal to a circuit node, an unstable state is occurs, which is used for oscillator circuits.
CMOS oscillators can be constructed with an odd number of inverters. The oscillator frequency f_{osc} is determined by inverter low-high/high-low transitions and inverter number.

\[f_{\text{osc}} \approx \frac{1}{N \cdot (t_{\text{IHL}} + t_{\text{ILH}})} \]
A mono-stable multi-vibrator is a circuit with delayed stable feedback. Thus pulses with fixed length can be generated.

$$t_{\text{pulse}} \approx RC \cdot \ln \frac{VDD}{VDD - V_{SP,I}}$$
Voltage-Generator Circuits
Simple Generator for Voltages >VDD and <VSS

High-voltage generator

$V_{\text{out}} \approx 2\,V_{\text{DD}} - 2V_{\text{TH,n}}$

Low-voltage generator

$V_{\text{out}} \approx -V_{\text{DD}} + 2V_{\text{TH,n}}$

Voltage-generator circuits are applied, if the circuits in the CMOS chip need other supply voltages than VDD and VSS.